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graph) on each E-class.
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     G|C2 is connected
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Structuring CBERs

A countable Borel equivalence relation (CBER) is an equivalence relation E on a standard 
Borel space X such that E ⊆ X2 is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on 
the equivalence classes in a Borel way.

Example 3. E is hyperfinite if there is a Borel way of putting a transitive ℤ action on each 
E-class.

● Borel action a: ℤ × X → X
● On each E-class C ∈ X/E, 

     a|(ℤ × C) is transitive



Structuring CBERs

Theme: global Borel structure that locally restricts to models of some theory 𝒯.

Class of CBERs Global structure Local theory

Treeable Borel graph G ⊆ E

ℒtree: binary relation symbol G

𝒯tree: ∀x ¬xGx
         ∀x∀y (xGy → yGx)
         ∀x∀y (x ≠ y ↔ ∃n ∈ ℕ ∃z1…∃zn (xGz1 … znGy))

Smooth Borel subset T ⊆ X
ℒsmooth: unary relation symbol T

𝒯smooth: ∃!x T(x)  

Hyperfinite Borel action a: ℤ × X → X

ℒhyp: unary function symbols an for each n ∈ ℤ 

𝒯hyp: ∀x ∀n,m ∈ ℤ, an(am(x)) = an+m(x)
        ∀x a1(x) = x
        ∀x∀y ∃n ∈ ℤ an(x) = y
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Countable first order logic

(Relational) signature ℒ set ℒ of “relation symbols”, map arity: ℒ → ℕ

(ℒω1,ω-) formula φ(x̄) built from symbols in ℒ by applying negations, quantifiers,
and countable conjunctions/disjunctions

(ℒω1,ω-) theory 𝒯 set of sentences: formulas without free variables

ℒ-structure ℳ = (X, Rℳ)R∈ℒ set X, interpretation Rℳ ⊆ Xarity(R) of each R ∈ ℒ 



Countable first order logic

(Relational) signature ℒ set ℒ of “relation symbols”, map arity: ℒ → ℕ

(ℒω1,ω-) formula φ(x̄) built from symbols in ℒ by applying negations, quantifiers,
and countable conjunctions/disjunctions

(ℒω1,ω-) theory 𝒯 set of sentences: formulas without free variables

ℒ-structure ℳ = (X, Rℳ)R∈ℒ set X, interpretation Rℳ ⊆ Xarity(R) of each R ∈ ℒ 

We define the set of all ℒ-structures on X by

And ModX( 𝒯 ) is the subset of ModX(ℒ) consisting of just the models of  𝒯 on X.

For countable X, ℒ, and 𝒯, ModX(𝒯) is a standard Borel space.



Structuring CBERs

Definition. Let E be a CBER on X, ℒ a countable signature, ℳ an ℒ-structure on X, and 𝒯 
a (countable ℒω1ω-) theory. 

Then ℳ is a 𝒯-structuring of E if:

1. Rℳ ⊆ Xarity(R) is Borel for each R ∈ ℒ. 
2. If ā ∈ Rℳ, then a1E…Ean.
3. For every E-class C, ℳ|C is a model of 𝒯.

We write ℳ: E ⊨ 𝒯 and say that E is 𝒯-structurable.



Free structurings
Some theories structure all CBERs.
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Example 1. X standard Borel ⇒ X has a countable separating family of Borel subsets Uk.
The Uk’s still separate points when restricted to any E-class. So every CBER is 
structurable by:

ℒsep : unary relation symbols Uk for k ∈ ℕ 

𝒯sep : ∀x∀y (x ≠ y → ∨k ∈ ℕ(Uk(x) ↔ ¬Uk(y))



Free structurings
Some theories structure all CBERs.

Example 1. X standard Borel ⇒ X has a countable separating family of Borel subsets Uk.
The Uk’s still separate points when restricted to any E-class. So every CBER is 
structurable by:

ℒsep : unary relation symbols Uk for k ∈ ℕ 

𝒯sep : ∀x∀y (x ≠ y → ∨k ∈ ℕ(Uk(x) ↔ ¬Uk(y))

Example 2. By the Luzin-Novikov theorem, there are countably many Borel functions 
fi: X → X whose graphs cover E. Restricting to any E-class, we get that every CBER is 
structurable by:

ℒLN : unary function symbols fi for i ∈ ℕ 

𝒯LN : ∀x∀y ∨i∈ℕ
 fi(x) = y



The Scott theory of a CBER

Proposition. For any CBER E on X, there is an ℒsep-theory 𝒯E (the “Scott theory” of E) 
such that 𝒯E-structurings are equivalent to class-bijective Borel homomorphisms into E.

Proof sketch: 

Note that models ℳ of 𝒯sep are equivalent to injections Uℳ into 2ℕ, and assume X is a 
Borel subset of 2ℕ. Then for any Borel subset B ⊆ (2ℕ)n, there is an n-ary quantifier-free 
ℒsep-formula ψB(x̄) such that ℳ ⊨ 𝒯sep ⋃ {ψB(ā)} ⇔ Uℳ(ā) ∈ B.

So define 𝒯E :=  𝒯sep ⋃ {∀x∀y ψE(x,y), ∀x ∧i∈ℕ ∃y ψf_i(x,y)}, where fi are LN-functions 

for E. Then 𝒯E models bijections into E-classes, so a 𝒯E-structuring of a CBER F is 
equivalent to a class-bijective Borel homomorphism F → E.
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When can a 𝒯’-structuring be defined from a 𝒯-structuring?



Interpretations

When can a 𝒯’-structuring be defined from a 𝒯-structuring?

When can a model 𝒩 of 𝒯’ be defined from a model ℳ of 𝒯?



Interpretations

When can a 𝒯’-structuring be defined from a 𝒯-structuring?

When can a model 𝒩 of 𝒯’ be defined from a model ℳ of 𝒯?

To define R𝒩 for each R ∈ ℒ’, need a translation R ↦ α(R) to an ℒ-formula, which 
ℳ can interpret: R𝒩 = α(R)ℳ. 



Interpretations

When can a 𝒯’-structuring be defined from a 𝒯-structuring?

When can a model 𝒩 of 𝒯’ be defined from a model ℳ of 𝒯?

To define R𝒩 for each R ∈ ℒ’, need a translation R ↦ α(R) to an ℒ-formula, which 
ℳ can interpret: R𝒩 = α(R)ℳ. 

To ensure 𝒩 ⊨ 𝒯’, need to require that 𝒯 ⊨ α(𝒯’), i.e. every model of 𝒯 also models
α(φ) for each φ ∈ 𝒯’. 



Interpretations

Definition. Let (ℒ, 𝒯) and (ℒ’, 𝒯’) be theories. 

An interpretation α from 𝒯 to 𝒯’ is a map 
α: ℒ → {ℒ’ formulas} such that

1. For each R ∈ ℒ, arity(R) = arity(α(R))
2. 𝒯’ ⊨ α(φ) for each φ ∈ 𝒯

We write α: 𝒯 → 𝒯’ and say that 𝒯’ interprets 𝒯.

α induces α*: Mod ℕ(𝒯’) → Mod
ℕ
(𝒯), a Borel map 

between the spaces of countable models.
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Interpretations

Example.

For any CBER E, the Scott theory 𝒯E 
of E interprets 𝒯sep⋃ 𝒯LN.

And every theory that interprets 𝒯sep⋃ 𝒯LN 
is a Scott theory 𝒯E for some CBER E!

𝒯sep⋃ 𝒯LN

Scott theories of 
CBERs
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Feldman-Moore theorem as an interpretation

Theorem (FM): Let E be a CBER on X. Then E is the orbit equivalence relation of a Borel 
action of some countable group G on X.

Proof: Turn LN functions fi for E into Borel involutions gi: X → X whose graphs still 
cover E, and close under composition.



Feldman-Moore theorem as an interpretation

Theorem (FM): Let E be a CBER on X. Then E is the orbit equivalence relation of a Borel 
action of some countable group G on X.

Proof: Turn LN functions fi for E into Borel involutions gi: X → X whose graphs still 
cover E, and close under composition.

Carrying out this construction on classes, we get an interpretation TFM → Tsep ⋃ TLN.



Interpretations and structurability

Write StrucE( 𝒯) for the set of 𝒯-structurings of E.

Proposition. Let E be any CBER and α: 𝒯 → 𝒯’ an interpretation. Then α induces a map 
α*: StrucE(𝒯’) → StrucE(𝒯).

Proof: Let ℳ be a 𝒯’-structuring of E. Idea: apply α* classwise. So define an 𝒯-structuring 
𝒩 of E by

ā ∈ R𝒩 :⇔ a1E…Ean & ā ∈ α(R)ℳ 

Why is R𝒩  Borel? 
(α(R) may not be quantifier-free.)



Interpretations and structurability

Proof: (continued…)

     Luzin-Novikov 

   f: ℕ → XX

 Borel g: X → Xℕ

       x  ↦  gx ∈ Bij(ℕ, [x]E)



Interpretations & class-bijective Borel homomorphisms

Theorem. 

(class-bijective Borel homomorphisms between CBERs)
≅

(interpretations between their Scott theories)

(Proof) An interpretation α: TE → 𝒯F induces a map α*: StrucF(𝒯F) → StrucF(𝒯E), and 
StrucF(𝒯E) ≅ { class-bijective Borel homomorphisms F → E }, so letting idF : F ⊨ 𝒯F be the 
identity structuring of F, we get a class-bijective Borel homomorphism α*(IdF): F → E.

Conversely, given f: F →B
cb E, to get an interpretation 𝒯E → 𝒯F, suffices to define 

α*: Mod(𝒯F) → Mod(𝒯E), or equivalently, α*: {bijections to F-classes} → {bijections to 
E-classes}, which we obtain by precomposition (g ↦ f ∘ g).



CBERs and Theories
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