Structurable CBERs and $\mathcal{L}_{\omega_1\omega}$ -interpretations

Rishi Banerjee University of Michigan

A <u>countable Borel equivalence relation</u> (CBER) is an equivalence relation E on a standard Borel space X such that $E \subseteq X^2$ is Borel and every E-class is countable.

A <u>countable Borel equivalence relation</u> (CBER) is an equivalence relation E on a standard Borel space X such that $E \subseteq X^2$ is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on the equivalence classes in a Borel way.

A <u>countable Borel equivalence relation</u> (CBER) is an equivalence relation E on a standard Borel space X such that $E \subseteq X^2$ is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on the equivalence classes in a Borel way.

Example 1. E is <u>treeable</u> if there is a Borel way of putting a tree (a connected acyclic graph) on each E-class.

A <u>countable Borel equivalence relation</u> (CBER) is an equivalence relation E on a standard Borel space X such that $E \subseteq X^2$ is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on the equivalence classes in a Borel way.

Example 2. E is <u>smooth</u> if there is a Borel way of picking a distinguished point in each E-class.

A <u>countable Borel equivalence relation</u> (CBER) is an equivalence relation E on a standard Borel space X such that $E \subseteq X^2$ is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on the equivalence classes in a Borel way.

Example 3. E is <u>hyperfinite</u> if there is a Borel way of putting a transitive \mathbb{Z} action on each E-class.

Theme: global Borel structure that locally restricts to models of some theory \mathcal{T} .

Class of CBERs	Global structure	Local theory
Treeable	Borel graph G ⊆ E	$ \begin{split} & \mathscr{L}_{tree} \text{: binary relation symbol G} \\ & \mathscr{T}_{tree} \text{: } \forall x \neg x G x \\ & \forall x \forall y (x G y \rightarrow y G x) \\ & \forall x \forall y (x \neq y \leftrightarrow \exists n \in \mathbb{N} \exists z_1 \dots \exists z_n (x G z_1 \dots z_n G y)) \end{split} $
Smooth	Borel subset $T \subseteq X$	\mathscr{L}_{smooth} : unary relation symbol T \mathscr{T}_{smooth} : $\exists !x T(x)$
Hyperfinite	Borel action a: $\mathbb{Z} \times X \to X$	$ \begin{split} & \mathscr{L}_{hyp} \text{: unary function symbols } a_n \text{ for each } n \in \mathbb{Z} \\ & \mathscr{T}_{hyp} \text{: } \forall x \ \forall n, m \in \mathbb{Z}, a_n(a_m(x)) = a_{n+m}(x) \\ & \forall x \ a_1(x) = x \\ & \forall x \ \forall y \ \exists n \in \mathbb{Z} \ a_n(x) = y \end{split} $

Theme: global Borel structure that locally restricts to models of some theory \mathcal{T} .

Class of CBERs	Global structure	Local theory
Treeable	Borel graph $G \subseteq E$	$ \begin{split} & \mathcal{L}_{\text{tree}} \text{: binary relation symbol G} \\ & \widetilde{\mathscr{T}}_{\text{tree}} \text{: } \forall x \neg x \text{G} x \\ & \forall x \forall y (x \text{G} y \to y \text{G} x) \\ & \forall x \forall y (x \neq y \leftrightarrow \exists n \in \mathbb{N} \exists z_1 \dots \exists z_n (x \text{G} z_1 \dots z_n \text{G} y)) \end{split} $
Smooth	Borel subset $T \subseteq X$	\mathcal{L}_{smooth} : unary relation symbol T \mathscr{T}_{smooth} : $\exists !x T(x)$
Hyperfinite	Borel action a: $\mathbb{Z} \times X \to X$	$ \begin{split} & \mathscr{L}_{hyp} \text{: unary function symbols } a_n \text{ for each } n \in \mathbb{Z} \\ & \mathscr{T}_{hyp} \text{: } \forall x \ \forall n, m \in \mathbb{Z}, a_n(a_m(x)) = a_{n+m}(x) \\ & \forall x \ a_1(x) = x \\ & \forall x \ \forall y \ \exists n \in \mathbb{Z} \ a_n(x) = y \end{split} $

Theme: global Borel structure that locally restricts to models of some $\mathcal{L}_{\omega 1,\omega}$ theory \mathcal{T} .

Class of CBERs	Global structure	Local theory
Treeable	Borel graph $G \subseteq E$	$ \begin{split} & \mathcal{L}_{\text{tree}} \text{: binary relation symbol G} \\ & \widetilde{\mathscr{T}}_{\text{tree}} \text{: } \forall x \neg xGx \\ & \forall x \forall y \text{ (xGy} \rightarrow yGx) \\ & \forall x \forall y \text{ (x} \neq y \leftrightarrow \bigvee_{n \in \mathbb{N}} \exists z_1 \dots \exists z_n \text{ (xGz}_1 \dots z_nGy)) \end{split} $
Smooth	Borel subset $T \subseteq X$	\mathcal{L}_{smooth} : unary relation symbol T \mathscr{T}_{smooth} : $\exists !x T(x)$
Hyperfinite	Borel action a: $\mathbb{Z} \times X \to X$	$ \begin{split} & \mathscr{L}_{hyp} \text{: unary function symbols } a_n \text{ for each } n \in \mathbb{Z} \\ & \mathscr{T}_{hyp} \text{: } \forall x \ \forall n, m \in \mathbb{Z}, a_n(a_m(x)) = a_{n+m}(x) \\ & \forall x \ a_1(x) = x \\ & \forall x \ \forall y \ \bigvee_{n \ \in \ \mathbb{Z}} a_n(x) = y \end{split} $

Expressiveness of various logics

Expressiveness of various logics

Countable first order logic

(Relational) signature \mathcal{L}

 $(\mathcal{L}_{\omega 1,\omega})$ -) <u>formula</u> $\phi(\bar{x})$

 $(\mathcal{L}_{\omega 1,\omega} \text{-}) \underline{\text{theory}} \mathcal{T}$

 $\mathcal{L}\text{-}\underline{structure}\;\mathcal{M}=(X,\;R^{\mathcal{M}})_{R\in\mathcal{L}}$

set \mathcal{L} of "relation symbols", map arity: $\mathcal{L} \to \mathbb{N}$

built from symbols in \mathcal{L} by applying negations, quantifiers, and **countable** conjunctions/disjunctions

set of <u>sentences</u>: formulas without free variables

set X, interpretation $R^{\mathcal{M}} \subseteq X^{\operatorname{arity}(R)}$ of each $R \in \mathcal{L}$

Countable first order logic

(Relational) <u>signature</u> \mathcal{L}

 (\mathcal{L}_{010}) theory \mathcal{T}

 $(\mathcal{L}_{\omega_1 \omega})$ -) <u>formula</u> $\varphi(\bar{\mathbf{x}})$

set ${\mathcal L}$ of "relation symbols", map arity: ${\mathcal L} \to {\mathbb N}$

built from symbols in \mathcal{L} by applying negations, quantifiers, and **countable** conjunctions/disjunctions

set of <u>sentences</u>: formulas without free variables

 \mathcal{L} -<u>structure</u> $\mathcal{M} = (X, R^{\mathcal{M}})_{R \in \mathcal{L}}$ set X, interpretation

set X, interpretation
$$\mathrm{R}^{\mathscr{U}} \subseteq \mathrm{X}^{\mathrm{arity}(\mathrm{R})}$$
 of each $\mathrm{R} \in \mathscr{L}$

We define the set of all \mathcal{L} -structures on X by

$$\operatorname{Mod}_X(\mathcal{L}) := \prod_{R \in \mathcal{L}} 2^{X^{\operatorname{arity}(R)}}$$

And $\operatorname{Mod}_X(\mathscr{T})$ is the subset of $\operatorname{Mod}_X(\mathscr{L})$ consisting of just the models of \mathscr{T} on X. For countable X, \mathscr{L} , and \mathscr{T} , $\operatorname{Mod}_X(\mathscr{T})$ is a standard Borel space.

Definition. Let E be a CBER on X, \mathcal{L} a countable signature, \mathcal{M} an \mathcal{L} -structure on X, and \mathscr{T} a (countable $\mathcal{L}_{\omega 1\omega}$ -) theory.

Then \mathcal{M} is a <u> \mathcal{T} -structuring</u> of E if:

- 1. $R^{\mathcal{M}} \subseteq X^{\operatorname{arity}(R)}$ is Borel for each $R \in \mathcal{L}$.
- 2. If $\bar{a} \in \mathbb{R}^{\mathcal{M}}$, then $a_1 E \dots E a_n$.
- 3. For every E-class C, $\mathcal{M} \mid C$ is a model of \mathscr{T} .

We write \mathcal{M} : $E \vDash \mathcal{T}$ and say that E is \mathcal{T} -structurable.

Free structurings

Some theories structure all CBERs.

Free structurings

Some theories structure all CBERs.

Example 1. X standard Borel \Rightarrow X has a countable separating family of Borel subsets U_k . The U_k 's still separate points when restricted to any E-class. So every CBER is structurable by:

$$\begin{split} & \mathcal{L}_{sep}: \text{unary relation symbols } U_k \text{ for } k \in \mathbb{N} \\ & \mathcal{T}_{sep}: \ \forall \, x \, \forall \, y \; (x \neq y \rightarrow \bigvee_{k \, \in \, \mathbb{N}} (U_k(x) \leftrightarrow \neg U_k(y)) \end{split}$$

Free structurings

Some theories structure all CBERs.

Example 1. X standard Borel \Rightarrow X has a countable separating family of Borel subsets U_k . The U_k 's still separate points when restricted to any E-class. So every CBER is structurable by:

$$\begin{split} & \mathcal{L}_{sep}: \text{unary relation symbols } U_k \text{ for } k \in \mathbb{N} \\ & \mathscr{T}_{sep}: \forall x \forall y \text{ } (x \neq y \rightarrow \bigvee_{k \, \in \, \mathbb{N}} (U_k(x) \leftrightarrow \neg U_k(y)) \end{split}$$

Example 2. By the Luzin-Novikov theorem, there are countably many Borel functions $f_i: X \to X$ whose graphs cover E. Restricting to any E-class, we get that every CBER is structurable by:

$$\begin{split} & \mathcal{L}_{LN}: \text{unary function symbols } f_i \text{ for } i \in \mathbb{N} \\ & \mathcal{T}_{LN}: \forall x \forall y \bigvee_{i \in \mathbb{N}} f_i(x) = y \end{split}$$

The Scott theory of a CBER

Proposition. For any CBER E on X, there is an \mathscr{L}_{sep} -theory \mathscr{T}_{E} (the "Scott theory" of E) such that \mathscr{T}_{E} -structurings are equivalent to class-bijective Borel homomorphisms into E. Proof sketch:

Note that models \mathscr{M} of \mathscr{T}_{sep} are equivalent to injections $U^{\mathscr{M}}$ into $2^{\mathbb{N}}$, and assume X is a Borel subset of $2^{\mathbb{N}}$. Then for any Borel subset $B \subseteq (2^{\mathbb{N}})^n$, there is an n-ary quantifier-free \mathscr{L}_{sep} -formula $\psi_B(\bar{x})$ such that $\mathscr{M} \models \mathscr{T}_{sep} \cup \{\psi_B(\bar{a})\} \Leftrightarrow U^{\mathscr{M}}(\bar{a}) \in B$.

So define $\mathscr{T}_E := \mathscr{T}_{sep} \cup \{ \forall x \forall y \psi_E(x,y), \forall x \land_{i \in \mathbb{N}} \exists y \psi_{f_i}(x,y) \}$, where f_i are LN-functions for E. Then \mathscr{T}_E models bijections into E-classes, so a \mathscr{T}_E -structuring of a CBER F is equivalent to a class-bijective Borel homomorphism $F \to E$.

When can a \mathscr{T} -structuring be defined from a \mathscr{T} -structuring?

When can a *I*-structuring be defined from a *I*-structuring?

When can a model \mathscr{N} of \mathscr{T} be defined from a model \mathscr{M} of \mathscr{T} ?

When can a \mathscr{T} -structuring be defined from a \mathscr{T} -structuring?

When can a model \mathscr{N} of \mathscr{T} be defined from a model \mathscr{M} of \mathscr{T} ?

To define $\mathbb{R}^{\mathscr{N}}$ for each $\mathbb{R} \in \mathscr{L}$, need a translation $\mathbb{R} \mapsto \alpha(\mathbb{R})$ to an \mathscr{L} -formula, which \mathscr{M} can interpret: $\mathbb{R}^{\mathscr{N}} = \alpha(\mathbb{R})^{\mathscr{M}}$.

When can a \mathscr{T} -structuring be defined from a \mathscr{T} -structuring?

When can a model \mathscr{N} of \mathscr{T} be defined from a model \mathscr{M} of \mathscr{T} ?

To define $\mathbb{R}^{\mathscr{N}}$ for each $\mathbb{R} \in \mathscr{L}$, need a translation $\mathbb{R} \mapsto \alpha(\mathbb{R})$ to an \mathscr{L} -formula, which \mathscr{M} can interpret: $\mathbb{R}^{\mathscr{N}} = \alpha(\mathbb{R})^{\mathscr{M}}$.

To ensure $\mathcal{N} \vDash \mathscr{T}$, need to require that $\mathscr{T} \vDash \alpha(\mathscr{T})$, i.e. every model of \mathscr{T} also models $\alpha(\varphi)$ for each $\varphi \in \mathscr{T}$.

Definition. Let $(\mathcal{L}, \mathcal{T})$ and $(\mathcal{L}', \mathcal{T})$ be theories.

An <u>interpretation</u> α from \mathscr{T} to \mathscr{T} is a map $\alpha: \mathscr{L} \to \{\mathscr{L} \text{ formulas}\}$ such that

- 1. For each $R \in \mathcal{L}$, $\operatorname{arity}(R) = \operatorname{arity}(\alpha(R))$
- 2. $\mathscr{T} \vDash \alpha(\varphi)$ for each $\varphi \in \mathscr{T}$

We write $\alpha: \mathscr{T} \to \mathscr{T}$ and say that \mathscr{T} <u>interprets</u> \mathscr{T} .

 $\begin{array}{l} \alpha \text{ induces } \alpha^* \text{: } \operatorname{Mod}_{\,_{\mathbb N}}(\mathscr{T}) \to \operatorname{Mod}_{\,_{\mathbb N}}(\mathscr{T}), \ a \ Borel \ map \\ \text{ between the spaces of countable models.} \end{array}$

Definition. Let $(\mathcal{L}, \mathcal{T})$ and $(\mathcal{L}', \mathcal{T})$ be theories.

An <u>interpretation</u> α from \mathscr{T} to \mathscr{T} is a map $\alpha: \mathscr{L} \to \{\mathscr{L} \text{ formulas}\}$ such that

- 1. For each $R \in \mathcal{L}$, $\operatorname{arity}(R) = \operatorname{arity}(\alpha(R))$
- 2. $\mathscr{T} \vDash \alpha(\varphi)$ for each $\varphi \in \mathscr{T}$

We write $\alpha: \mathscr{T} \to \mathscr{T}$ and say that \mathscr{T} <u>interprets</u> \mathscr{T} .

 $\begin{array}{l} \alpha \text{ induces } \alpha^* : \operatorname{Mod}_{\mathbb{N}}(\mathscr{T}) \to \operatorname{Mod}_{\mathbb{N}}(\mathscr{T}), \ a \ Borel \ map \\ \text{ between the spaces of countable models.} \end{array}$

Example.

 $\begin{array}{l} \text{For any CBER E, the Scott theory } \mathscr{T}_{\text{E}} \\ \text{ of E interprets } \mathscr{T}_{\text{sep}} \cup \mathscr{T}_{\text{LN}}. \end{array}$

And every theory that interprets $\mathscr{T}_{sep} \cup \mathscr{T}_{LN}$ is a Scott theory \mathscr{T}_{E} for some CBER E!

Feldman-Moore theorem as an interpretation

<u>Theorem</u> (FM): Let E be a CBER on X. Then E is the orbit equivalence relation of a Borel action of some countable group G on X.

Proof: Turn LN functions f_i for E into Borel involutions $g_i: X \to X$ whose graphs still cover E, and close under composition.

Feldman-Moore theorem as an interpretation

<u>Theorem</u> (FM): Let E be a CBER on X. Then E is the orbit equivalence relation of a Borel action of some countable group G on X.

Proof: Turn LN functions f_i for E into Borel involutions $g_i: X \to X$ whose graphs still cover E, and close under composition.

Carrying out this construction on classes, we get an interpretation $T_{FM} \rightarrow T_{sep} \cup T_{LN}$.

Interpretations and structurability

Write $\text{Struc}_{\text{E}}(\mathscr{T})$ for the set of \mathscr{T} -structurings of E.

<u>Proposition</u>. Let E be any CBER and $\alpha: \mathscr{T} \to \mathscr{T}$ an interpretation. Then α induces a map $\alpha^*: \operatorname{Struc}_{E}(\mathscr{T}) \to \operatorname{Struc}_{E}(\mathscr{T})$.

Proof: Let \mathcal{M} be a \mathscr{T} -structuring of E. Idea: apply α^* classwise. So define an \mathscr{T} -structuring \mathscr{N} of E by

$$\bar{\mathbf{a}} \in \mathbf{R}^{\mathscr{N}}: \Leftrightarrow \mathbf{a}_1 \mathbf{E} \dots \mathbf{E} \mathbf{a}_n \ \& \ \bar{\mathbf{a}} \in \alpha(\mathbf{R})^{\mathscr{M}}$$

Why is $\mathbb{R}^{\mathscr{N}}$ Borel? ($\alpha(\mathbb{R})$ may not be quantifier-free.)

Interpretations and structurability

Proof: (continued...)

Luzin-Novikov

 $\begin{array}{c} f: \mathbb{N} \to X^{X} \\ \downarrow \\ \downarrow \\ \\ Borel \ g: X \to X^{\mathbb{N}} \\ x \ \mapsto \ g_{x} \in Bij(\mathbb{N}, \ [x]_{F}) \end{array}$

Interpretations & class-bijective Borel homomorphisms

Theorem.

(class-bijective Borel homomorphisms between CBERs)

 \cong

(interpretations between their Scott theories)

(Proof) An interpretation $\alpha: T_E \to \mathscr{T}_F$ induces a map $\alpha^*: \operatorname{Struc}_F(\mathscr{T}_F) \to \operatorname{Struc}_F(\mathscr{T}_E)$, and $\operatorname{Struc}_F(\mathscr{T}_E) \cong \{ \text{ class-bijective Borel homomorphisms } F \to E \}$, so letting $\operatorname{id}_F : F \vDash \mathscr{T}_F$ be the identity structuring of F, we get a class-bijective Borel homomorphism $\alpha^*(\operatorname{Id}_F): F \to E$.

Conversely, given f: $F \to_B^{cb} E$, to get an interpretation $\mathscr{T}_E \to \mathscr{T}_F$, suffices to define $\alpha^*: \operatorname{Mod}(\mathscr{T}_F) \to \operatorname{Mod}(\mathscr{T}_E)$, or equivalently, $\alpha^*: \{\text{bijections to } F\text{-classes}\} \to \{\text{bijections to } E\text{-classes}\}, which we obtain by precomposition } (g \mapsto f \circ g).$

CBERs and Theories

