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A countable Borel equivalence relation (CBER) 1s an equivalence relation E on a standard

Borel space X such that E € X2 is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on
the equivalence classes in a Borel way.

Example 1. E 1s treeable if there is a Borel way of putting a tree (a connected acyclic
graph) on each E-class.

e Borel acyclic graph G € E
e On each E-class C € X/E,
G | C? is connected




Structuring CBERs

A countable Borel equivalence relation (CBER) 1s an equivalence relation E on a standard

Borel space X such that E € X2 is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on
the equivalence classes in a Borel way.

Example 2. E 1s smooth if there 1s a Borel way of picking a distinguished point in each
E-class.

e Borel subset T € X
e On each E-class C € X/E,
T | C is a singleton




Structuring CBERs

A countable Borel equivalence relation (CBER) 1s an equivalence relation E on a standard

Borel space X such that E € X2 is Borel and every E-class is countable.

We can classify CBERs by thinking about the sorts of structures that can be defined on
the equivalence classes in a Borel way.

Example 3. E 1s hyperfinite if there 1s a Borel way of putting a transitive Z action on each

E-class.

(x€) i
4

il e Borelactiona:ZxX — X
e On each E-class C € X/E,

a|(Z x C) is transitive




Structuring CBERs

e

Theme: global Borel structure that locally restricts to models of some theory 7.

Class of CBERs Global structure Local theory

£, ...: binary relation symbol G

Treeable Borel graph G € E I oot Vx xGx
VxVy xGy — yGx)
VxVy(x#y< dn &N Jz,...3z_(xGz, ... z Gy))

£ ooy Unary relation symbol T
Smooth Borel subset T © X
T : dlx T(x)

smooth®

£, . : unary function symbols a_for each n € Z
yp n

Hyperfinite Borel action a: Zx X > X | %yt VX VDM € Z, 8 (2 () =2, (X)
Vxa (x) =x

VxVy dn € Za (x) =y
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Structuring CBERs

Theme: global Borel structure that locally restricts to models of some £ | ~theory .

H

Class of CBERs Global structure Local theory

£. . binary relation symbol G

tree’

7. VxxGx
Tr ! B 1 h CE Q/Jree
eeable orel graph G t Ty Gy 7Gx
VxVyx#y e \/n ey 32,...3z_(xGz, ... z_Gy))
Smooth Borel subset T < X £ oo UNAry relation symbol T
moo orel subset T <

T : dlx T(x)

smooth®

iﬁhyp: unary function symbols a_for eachn € Z

Hyperfinite Borel action a: Z x X — X %yp: Vx Vnm €7 a,(a,)=a,, &
Vxa (x) =x

VxVy \/n cg,a (X =y
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infinite sets

groups
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TRET G-actions
ordinary
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infinite sets

finite sets

groups torsion groups
graphs connected graphs countable sets
G-actions
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Countable first order logic

(Relational) signature £

(iml,m-) formula ¢(X)

(£,,,”) theory 7

£-structure M = (X, R,

set £ of “relation symbols”, map arity: £ — N

built from symbols in £ by applying negations, quantifiers,
and countable conjunctions/disjunctions

set of sentences: formulas without free variables

set X, interpretation R* € X@W® of each R € ¢



Countable first order logic

(Relational) signature £ set £ of “relation symbols”, map arity: £ — N

(’%m,m') formula ¢(X) built from symbols in £ by applying negations, quantifiers,
and countable conjunctions/disjunctions

(’%m,m') theory & set of sentences: formulas without free variables

£-structure M = (X, R, set X, interpretation R* € X@W® of each R € ¢

We define the set of all £-structures on X by
MOdX (ﬁ) - HR€£2xarity(R)
And Mod( ) 1s the subset of Mod(£) consisting of just the models of Zon X.

For countable X, £, and 7, Mody(7) is a standard Borel space.



Structuring CBERs

Definition. Let E be a CBER on X, £ a countable signature, M an £-structure on X, and &
a (countable £ . -) theory.

Then M 1s a &structuring of E if:

1. R* < Xa%® 5 Borel for each R € £.
2. Ifa € RY thenaE..Ea_.
3. For every E-class C, At | C is a model of 7.

We write A: E = Zand say that E 1s Z-structurable.




Free structurings

Some theories structure all CBERs.



Free structurings

Some theories structure all CBERs.

Example 1. X standard Borel = X has a countable separating family of Borel subsets U, .
The U, s still separate points when restricted to any E-class. So every CBER i1s
structurable by:

éﬁsep : unary relation symbols U, for k € N
Tt VXVy x#y = V(U ® < “UH)

sep



Free structurings

Some theories structure all CBERs.

Example 1. X standard Borel = X has a countable separating family of Borel subsets U, .
The U, s still separate points when restricted to any E-class. So every CBER i1s
structurable by:

iﬁsep : unary relation symbols U, for k € N
Tt VxVy @ty — V, o (U, < U,)

sep

Example 2. By the Luzin-Novikov theorem, there are countably many Borel functions
f.. X — X whose graphs cover E. Restricting to any E-class, we get that every CBER 1s
structurable by:

£,y - unary function symbols f. for1 € N

Iy VXVy \/iEN f(x)=y



The Scott theory of a CBER

Proposition. For any CBER E on X, there is an éﬁsep—theory I (the “Scott theory” of E)
such that 7 -structurings are equivalent to class-bijective Borel homomorphisms into K.

Proof sketch:

Note that models M of & op AT€ equivalent to injections U* into 2V, and assume X is a
Borel subset of 2. Then for any Borel subset B S (2V)", there is an n-ary quantifier-free
£,.,-formula y,(X) such that M 7 U {y, @)} & U'(a) € B.

So define 7, := QO/‘S'ep U{VxVy yp(x,y), VX /\iEN Elwa_i(x,y)}, where f. are LN-functions

for E. Then &, models bijections into E-classes, so a -structuring of a CBER F 1s
equivalent to a class-bijective Borel homomorphism F — E.
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When can a model .4 of 4 be defined from a model .M of 77

To define R” for each R € ¥, need a translation R » a(R) to an ¢-formula, which
M can interpret: R = a(R)"™



Interpretations

When can a &-structuring be defined from a J-structuring?

When can a model .4 of 4 be defined from a model .M of 77

To define R” for each R € ¥, need a translation R » a(R) to an ¢-formula, which
M can interpret: R = a(R)"™

To ensure .4+ &, need to require that 7= a(7), 1.e. every model of 7 also models
a(p) for each ¢ € 7.



Interpretations

Definition. Let (£, &) and (£, 7) be theories.

An interpretation o from Zto & is a map
a: £ — {£ formulas} such that

1. For each R € %, arity(R) = arity(a(R))
2. T rEo(e) for each o € 7

We write o: 7 — 7 and say that & interprets 7.

o induces o*: Mod () — Mod,(¥), a Borel map
between the spaces of countable models.
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Definition. Let (£, &) and (£, 7) be theories.

An interpretation o from Zto & is a map
a: £ — {£ formulas} such that

1. For each R € %, arity(R) = arity(a(R))
2. T rEo(e) for each o € 7

We write o: 7 — 7 and say that & interprets 7.

o induces o*: Mod () — Mod,(¥), a Borel map
between the spaces of countable models.

Theories

“hard to construct”

Interpretations

“easy to construct”



Interpretations

Theories

Example. “hard to construct”

Scott theories of
CBERs

For any CBER E, the Scott theory 7,

of K interprets 7 epU TN 4 §

And every theory that interprets & epU TN E
1s a Scott theory 7, for some CBER E! %
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“easy to construct”



Feldman-Moore theorem as an interpretation

Theorem (FM): Let E be a CBER on X. Then E is the orbit equivalence relation of a Borel
action of some countable group G on X.

Proof: Turn LN functions f. for E into Borel involutions g.: X — X whose graphs still
cover E, and close under composition.



Feldman-Moore theorem as an interpretation

Theorem (FM): Let E be a CBER on X. Then E is the orbit equivalence relation of a Borel
action of some countable group G on X.

Proof: Turn LN functions f. for E into Borel involutions g.: X — X whose graphs still
cover E, and close under composition.

Carrying out this construction on classes, we get an interpretation T, — TSep UT, \
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Interpretations and structurability

Write Struc,( ) for the set of J~structurings of E.

Proposition. Let E be any CBER and a: 4 — & an interpretation. Then o induces a map
o*: Strucy(¥) — Strucy(9).

Proof: Let M be a &-structuring of E. Idea: apply o* classwise. So define an Z-structuring
N of E by

ac R a,E..Ea &a & a(R)"“

Why is R Borel?
((R) may not be quantifier-free.)



Interpretations and structurability

Proof: (continued...)

L.uzin-Novikov

f: N - XX
|
|
|
|
|

Borel g: X — X!

L
x » g € By, [x],) : = Z_}%\Gﬂ
. i .




Interpretations & class-bijective Borel homomorphisms

Theorem.

(class-bijective Borel homomorphisms between CBERS)

~

(interpretations between their Scott theories)

(Proof) An interpretation a: T, — &, induces a map o*: Struc, () — Struc,(¥;), and
Struc, () = { class-bijective Borel homomorphisms F — K }, so letting id,, : F = &, be the
identity structuring of F, we get a class-bijective Borel homomorphism o*(Idy): F — E.

Conversely, given f: F —>BCb E, to get an interpretation &, — , suffices to define
o*: Mod(7,) — Mod(,), or equivalently, o*: {bijections to F-classes} — {bijections to
E-classes}, which we obtain by precomposition (g = f ° g).



CBERs and Theories

CBERs Theories

“hard to construct”
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